Journal of Organometallic Chemistry, 390 (1990) 257-265
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands
JOM 20852

Synthesis and reactivity of palladium and platinum complexes containing the bis(diphenylphosphino)methanide ligand

J. Forniés, R. Navarro and E.P. Urriolabeitia
Departamento de Química Inorgánica. Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, C.S.I.C. 50009 Zaragoza (Spain)

(Received January 11th, 1990)

Abstract

Complexes of general formulae $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)(\mathrm{L})\right](\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{X}=\mathrm{F}$, $\left.\mathrm{Cl} ; \mathrm{L}=\mathrm{PR}_{3}, \operatorname{dppm}\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\right)$ have been obtained either by reaction of $\mathrm{MCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)_{2}$ with dppm and NaH or with $\mathrm{dppm}-\mathrm{Li}$ or reaction of $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)$ with NaH . The complexes $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)(\mathrm{acac})(\mathrm{L})$ react with dppm to give analogous ddppm $\left\{\left[\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right]^{-}\right\}$derivatives. Treatment of these complexes with HBF_{4} gives of the corresponding dppm cationic derivatives. The complexes have been characterized by IR, ${ }^{19} \mathrm{~F}$ NMR, and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectroscopy.

Introduction

We previously studied the synthesis and reactivity of mononuclear and dinuclear perhalophenyl derivatives of $\mathbf{P d}{ }^{\mathbf{I I}}, \mathrm{Pt}^{\mathbf{I I}}, \mathbf{P d}^{\mathbf{I}}$ and $\mathbf{P t}^{\mathrm{I}}$ containing bis(diphenylphosphino)methane (dppm) as a neutral ligand [1]. It has been known for several years that the CH_{2} group of dppm can be deprotonated by strong bases to give the anion bis(diphenylphosphino)methanide $\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right]^{-}$(ddppm), and that this anion is itself a good ligand [2,3]. This ligand (ddppm) has received attention recently in the coordination chemistry of $\mathrm{Pd}^{\text {II }}$ and Pt^{11} [4-9]. We have now used several routes to make mononuclear pentahalophenyl derivatives of $\mathbf{P d}^{I I}$ and $\mathbf{P t}^{I I}$ containing the $\left[\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CH}\right]^{-}$group acting as $\mathbf{P}-\mathbf{P}$ bidentate ligand. The interconversion of the coordinated dppm and ddppm ligands has also been studied.

Results and discussion

Analytical and relevant IR absorptions are listed in Table 1, and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ and ${ }^{19} \mathrm{~F}$ NMR parameters are summarized in Tables 2 and 3, respectively.

Table 1
Analytical and relevant IR data (cm^{-1}).

Complexes	Analyses (found (calcd.) (\%))		IR	
	C	H	$\mathrm{C}_{6} \mathrm{X}_{5}{ }^{\text {a }}$	ddppm
$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)$ (I)	$\begin{gathered} 63.98 \\ (64.03) \end{gathered}$	$\begin{gathered} 3.80 \\ (3.94) \end{gathered}$	770	900,870
$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Et}\right)$ (II)	$\begin{gathered} 61.85 \\ (62.04) \end{gathered}$	$\begin{gathered} 4.13 \\ (4.16) \end{gathered}$	775	895,855
$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)$ (III)	$\begin{gathered} 62.65 \\ (61.66) \end{gathered}$	$\begin{gathered} 4.28 \\ (3.99) \end{gathered}$	770	895,855
$\mathrm{Pt}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right), ~}^{\text {a }}$ (IV)	$\begin{gathered} 58.36 \\ (58.39) \end{gathered}$	$\begin{gathered} 4.07 \\ (3.60) \end{gathered}$	780	905,855
$\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Et}\right)$ (V)	$\begin{gathered} 56.52 \\ (56.31) \end{gathered}$	$\begin{gathered} 4.12 \\ (3.78) \end{gathered}$	780	895,840
(VI)	$\begin{gathered} 56.84 \\ (56.26) \end{gathered}$	$\begin{gathered} 3.77 \\ (3.64) \end{gathered}$	830,610 ${ }^{\text {b }}$	890,870
$\begin{aligned} & \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{dppm}-\mathrm{P}) \\ & \text { (VII) } \end{aligned}$	$\begin{gathered} 59.66 \\ (59.86) \end{gathered}$	$\begin{gathered} 3.87 \\ (3.85) \end{gathered}$	$825,610^{\text {b }}$	895,870
$\begin{aligned} & \mathrm{Pt}_{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)(\mathrm{dppm}-P)}^{(\mathrm{VIII})} \end{aligned}$	$\begin{gathered} 58.52 \\ (59.52) \end{gathered}$	$\begin{gathered} 4.03 \\ (3.83) \end{gathered}$	785	900,865
$\begin{aligned} & \left.\left[\mathrm{Pd}_{(} \mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{BF}_{4}\right) \\ & \text { (IX) } \end{aligned}$	$\begin{gathered} 58.33 \\ (58.44) \end{gathered}$	$\begin{gathered} 3.95 \\ (3.70) \end{gathered}$	790	
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right]\left(\mathrm{BF}_{4}\right)$ (X)	$\begin{gathered} 56.61 \\ (56.36) \end{gathered}$	$\begin{gathered} 3.73 \\ (3.89) \end{gathered}$	780	
$\begin{aligned} & {\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right]\left(\mathrm{BF}_{4}\right)} \\ & \quad \text { (XI) } \end{aligned}$	$\begin{gathered} 55.38 \\ (55.93) \end{gathered}$	$\begin{gathered} 4.06 \\ (3.73) \end{gathered}$	770	
$\begin{aligned} & {\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)}^{\text {(XII) }}\right.} \end{aligned}$	$\begin{gathered} 53.45 \\ (53.71) \end{gathered}$	$\begin{gathered} 3.67 \\ (3.40) \end{gathered}$	790	
$\begin{aligned} & {\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{tht})\right]\left(\mathrm{ClO}_{4}\right)} \\ & \quad \text { (XIII) } \end{aligned}$	$\begin{gathered} 49.74 \\ (49.72) \end{gathered}$	$\begin{gathered} 3.73 \\ (3.57) \end{gathered}$	780	
$\begin{aligned} & {\left[\mathrm{Pd}\left(\grave{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)} \\ & \quad(\mathrm{XIV}) \end{aligned}$	$\begin{gathered} 57.68 \\ (57.72) \end{gathered}$	$\begin{gathered} 4.11 \\ (3.65) \end{gathered}$	780	
$\begin{aligned} & \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})(\mathrm{dppm}-P) \\ & (X V) \end{aligned}$	$\begin{gathered} 52.29 \\ (51.52) \end{gathered}$	$\begin{gathered} 4.17 \\ (3.48) \end{gathered}$	835,645 ${ }^{\text {b }}$	

${ }^{a}$ X-sensitive absorption. ${ }^{b} \boldsymbol{\nu}(\mathrm{M}-\mathrm{C})$ bond.

Synthesis of the complexes

Neutral palladium complexes of the type $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PR}_{3}\right)\right]$ (A) containing the P, P^{\prime}-chelating ligand bis(diphenylphosphino)methanide have been obtained by various routes, which are summarized in Scheme 1.

Route 1a. Reaction of the $\operatorname{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)_{2}$ derivatives in THF with dppm in the presence of NaH results in deprotonation of the CH_{2} group of the dppm ligand.

Route 1b. The reaction of a THF solution of $\mathrm{Li}\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)$ (prepared in situ by reacting dppm and $\left.{ }^{n} \mathrm{BuLi}\right)$ with $\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)_{2}$ gives complexes of type \mathbf{A}.

Route 1c. The acetylacetonate complexes $\mathrm{Pd}(\mathrm{acac})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)$ react with dppm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to yield the corresponding ddppm derivatives (type A, Scheme 1) and acacH. This process was unexpected in view of the relative acidities of acacH and dppm, which have $\mathrm{p} K_{\mathrm{a}}$ values of 9.0 and 29.9 , respectively [10,11]. The occurrence of the reaction can probably be attributed to electronic effects; the $\mathrm{Pd}^{\mathrm{II}}$ is a class b metallic centre, and process 1 c involves substitution of a

Table 2
${ }^{31} \mathbf{P}\left({ }^{\mathbf{l}} \mathrm{H}\right) \mathrm{NMR}^{\boldsymbol{a}}$ data ($\left.\delta(\mathrm{ppm}), J(\mathrm{~Hz})\right)$

${ }^{a}$ In CDCl_{3} values relative to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$.

$\left(\mathbf{P R}_{3}=\mathbf{P P h}_{3}(\mathrm{I}), \mathrm{PPh}_{2} \mathbf{E t}(\mathrm{II}), \mathrm{PPh}_{2} \mathbf{M e}(\mathrm{III})\right)$
Scheme 1

Table 3
${ }^{19}$ F NMR ${ }^{a}$ data (δ (ppm), $J \mathrm{~Hz}$))

	$\delta\left(F_{o}\right)$	$\delta\left(\mathrm{F}_{m}\right)$	$\delta\left(\mathrm{F}_{p}\right)$	$\delta\left(\mathrm{BF}_{4}\right)$	${ }^{3} \mathrm{~J}\left(\mathrm{Pt}-\mathrm{F}_{e}\right)$
I	-112.9	-162.9	-162.1		
II	-112.6	-162.9	-161.7		
III	-112.4	-163.0	-161.9		
IV	-115.0	-	-		282
V	-117.5	-165.4	-163.7		282
VIII	-117.6	-165.5	-163.8		281
IX	-117.3	-162.0	-159.7	-153.1	
X	-116.3	-161.4	-158.3	-153.2	
XI	-116.7	-161.6	-158.7	-153.1	
XII	-119.0	-163.1	-160.7	-153.2	278
XIII	-117.5	-160.9	-157.1		
XIV	-117.1	-161.8	-159.5		

${ }^{a}$ In CDCl_{3} values relative to external CFCl_{3}.
O, O^{\prime}-donor by a P, P^{\prime}-donor ligand [12]. This type of process has been reported previously [6]

Route 1d. Cationic complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)$ are deprotonated by NaH in THF under mild conditions.

The pentachlorophenyl derivative $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)$ (VI) has been obtained by route 1 c (Scheme 1) by using $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})\left(\mathrm{PPh}_{2} \mathrm{Me}\right)$ as starting material. Complex VI can also be obtained by treating $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})$ (dppm- P) with $\mathrm{PPh}_{2} \mathrm{Me}$ (molar ratio $1 / 1$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (eq. 1). $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\mathrm{dppm}-P)+\mathrm{PPh}_{2} \mathrm{Me} \rightarrow$

$$
\begin{equation*}
\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{ddppm})\left(\mathrm{PPh}_{2} \mathrm{Me}\right)+\mathrm{acacH} \tag{1}
\end{equation*}
$$

Perfluorophenyl derivatives of $\mathrm{Pt}^{\mathrm{II}} \mathbf{P t}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathbf{P C H P P h}\right)\left(\mathrm{PR}_{3}\right)\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$ (IV), $\mathrm{PPh}_{2} \mathrm{Et}$ (V)) were obtained by methods $1 \mathrm{a}, 1 \mathrm{c}$ and 1 d from the appropriate starting materials. Complex V was also made by treating $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac})($ tht $)$ with dppm and $\mathrm{PPh}_{2} \mathrm{Et}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, as in eq. 2.
$\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.$ acac- $\left.-\mathrm{O}, \mathrm{O}^{\prime}\right)(\mathrm{tht})+\mathrm{dppm}+\mathrm{PPh}_{2} \mathrm{Et} \rightarrow$

$$
\begin{equation*}
\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{ddppm})\left(\mathrm{PPh}_{2} \mathrm{Et}\right)+\mathrm{acacH}+\mathrm{th} t \tag{2}
\end{equation*}
$$

Some $\mathrm{Pd}^{\mathrm{II}}$ or $\mathrm{Pt}^{\mathrm{II}}$ perhalophenyl complexes containing both the monodentate dppm and chelate ddppm ligands were obtained by routes $2 \mathrm{a}, \mathrm{b}, \mathrm{c}$ of Scheme 2.

Routes 2a, b and c (Scheme 2) involve the elimination of the acetylacetonate ligand as acacH and coordination of the deprotonated dppm as a chelated ligand. With $2 a$ and 2 c the monodentate neutral ligand is replaced by a dppm group in monodentate mode (dppm-P).

The syntheses of the complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})(\mathrm{tht})\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{XIII}),\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ (dppm) $\left.\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)$ (XIV) and $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)($ acac $)(\mathrm{dppm}-\mathrm{P})$ (XV), used as starting materials, are described in the Experimental section.

As expected, complexes containing ddppm react with HBF_{4} in $\mathrm{Et}_{2} \mathrm{O}$ to give the corresponding dppm derivatives (eq. 3), in keeping with the basic character of the carbon atom of the methanide group.
$\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{ddppm})\left(\mathrm{PR}_{3}\right)+\mathrm{HBF}_{4} \rightarrow\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$

$$
\begin{aligned}
& 2 \text { dppm, } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text { (2a) } \\
& M\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)(\mathrm{acac})(\text { tht }) \frac{2 \mathrm{dppm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{a})}{-\mathrm{acach},-\mathrm{th} t} \\
& \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)(\mathrm{acac})(\mathrm{dppm}-\mathrm{P}) \xrightarrow[-\mathrm{acach}]{\mathrm{dppm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~b})} \underset{\mathrm{Ph}_{2}}{\mathrm{PC}} \underset{\mathrm{P}}{\mathrm{Ph}_{3}} \mathrm{PPh}_{2}-\mathrm{CH}_{2}-\mathrm{PPh}_{2} \\
& \mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)-\frac{2 \mathrm{dppm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{c})}{-\mathrm{acacH},-\mathrm{PPh}_{3}} \\
& \text { (} \mathrm{M}=\mathrm{Pd}, \mathrm{C}_{6} \mathrm{X}_{5}=\mathrm{C}_{6} \mathrm{Cl}_{5} \text { (VII); } \mathrm{M}=\mathrm{Pt}, \mathrm{C}_{6} \mathrm{X}_{5}=\mathrm{C}_{6} \mathrm{~F}_{5} \text { (VIII)) }
\end{aligned}
$$

Scheme 2

Even so we were unable to obtain binuclear derivatives by making use of the residual electronic density on the CH group of ddppm ligand in our complexes. No reaction took place between $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{ddppm})$ and $\mathrm{O}_{3} \mathrm{ClOAgPPh}_{3}$ in anhydrous OEt_{2}, the starting materials being recovered after 2 h at room temperature. On the other hand, from the reaction between $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{ddppm})$ and $\mathrm{Pd}\left(\mathrm{OClO}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ in benzene (4 h) we were able to isolate $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right.$ (dppm) $]\left(\mathrm{ClO}_{4}\right)$ but no binuclear derivatives. These results are in contrast with the well known ability of the ddppm ligand to act as a tridentate ligand by using not only its P-donor atoms but also the C atoms of the methanide group [13-16].

$I R,{ }^{19} F$ and ${ }^{31} P\left({ }^{1} H\right) N M R$

All the IR spectra of the pentafluorophenyl derivatives show characteristics bands of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group [17] near 1510,1050 , and $950 \mathrm{~cm}^{-1}$. The pentachlorophenyl derivatives show absorptions due to the $\mathrm{C}_{6} \mathrm{Cl}_{5}$ group ($1290-1230 \mathrm{~cm}^{-1}$ region and ca. $620 \mathrm{~cm}^{-1}$) [18,19]. Complexes IX-XII exhibit a strong and broad absorption at $\approx 1060 \mathrm{~cm}^{-1}$ due to the counter ion $\mathrm{BF}_{4}{ }^{-}$[20].

In any of two coordination modes of the dppm (monodentate or chelate) this ligand shows characteristic absorptions in the range $520-410 \mathrm{~cm}^{-1}$, but an extra absorption of medium to strong intensity in the range $550-530 \mathrm{~cm}^{-1}$ is observed when the dppm acts as a chelating ligand. The $\left[\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right]^{-}$group shows, in addition to the characteristic absorptions in the $550-400 \mathrm{~cm}^{-1}$ area, two strong absorptions in the $900-850 \mathrm{~cm}^{-1}$ region that seem to be characteristic vibrations of the methanide $\mathrm{P}-\mathrm{CH}-\mathrm{P}$ system [5].

The chemical shifts and $J(\mathbf{P}-\mathrm{P})$ and $J(\mathbf{P t}-\mathrm{P})$ values (see Table 2) from the ${ }^{31} \mathrm{P}$ NMR spectra provide valuable information about the various \mathbf{P} atoms in the PR_{3} or diphosphine groups. For the complexes I-XV, we can distinguish several types of P atoms:
(a) $\mathrm{P}_{\mathrm{A}}, \mathbf{P}$ atom of the coordinated PR_{3};
(b) $\mathbf{P}_{\mathrm{B}}, \mathbf{P}$ atom trans to a PR_{3} group of the ddppm ligand;
(c) P_{C}, P atom trans to a $C_{6} X_{5}$ group of the ddppm ligand;
(d) P_{D}, uncoordinated P atom of the monodentate dppm ligand;
(e) P_{E}, coordinated P atom of the monodentate dppm ligand;
(f) P_{F}, P atom trans to L of the chelate dppm ligand;
(g) $\mathrm{P}_{\mathrm{G}}, \mathrm{P}$ atom trans to $\mathrm{C}_{6} \mathrm{~F}_{5}$ of the chelate dppm ligand.

The \mathbf{P} atoms of $\mathrm{PR}_{3}\left(\mathbf{P}_{\mathrm{A}}\right)$ show positive ${ }^{31} \mathrm{P}$ chemical shifts (24 to 5 ppm). The signal due to P_{A} in $\mathrm{Pd}^{(11)}$ derivatives appears at higher frequencies than that in the related $\mathrm{Pt}^{(\mathrm{II})}$ complexes.

The P atoms of bidentate $\left[\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right]^{-}$group $\left(\mathrm{P}_{\mathrm{B}}, \mathrm{P}_{\mathrm{C}}\right)$ show high negative ${ }^{31} \mathbf{P}$ chemical shifts (-36 to -48 ppm). The signal from the P_{C} atom (trans to $\mathrm{C}_{6} \mathrm{X}_{5}$ group) appears at lower frequencies than that from the P_{B} atom (trans to a neutral PR_{3} ligand). The values of ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{C}}\right)$ are $\approx 50 \mathrm{~Hz}$ in the $\mathrm{Pd}^{(1 \mathrm{I})}$ complexes and smaller ($\approx 15 \mathrm{~Hz}$) in the $\mathrm{Pt}^{(\mathrm{II})}$ compounds. However, the ${ }^{2} J\left(\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{C}}\right.$) couplings are not observable for $\mathrm{Pd}^{(\mathrm{III})}$ complexes but have values of ca. 10 Hz for the $\mathbf{P t}^{(\mathrm{II})}$ complexes.

The coordinated P atom in the monodentate dppm ligand $\left(\mathrm{P}_{\mathrm{E}}\right)$ shows positive ${ }^{31} \mathrm{P}$ chemical shifts ($\mathbf{1 6 . 3} \mathbf{~ p p m}$ to VII, 10.7 ppm to VIII, 23.8 ppm to XV) in the region expected for monodentate PR_{3} groups (P_{A}). The uncoordinated \mathbf{P} atom in the dppm- $\mathrm{P}_{\text {group (}}\left(\mathrm{P}_{\mathrm{D}}\right.$) appears at negatives values, well removed from the P_{E} signals.

The P atoms of bidentate chelate $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ group ($\mathrm{P}_{\mathrm{F}}, \mathrm{P}_{\mathrm{G}}$) show negative ${ }^{31} \mathrm{P}$ chemical shifts (-26 to -43 ppm), shifted upfield from the ${ }^{31} \mathrm{P}$ signal from the free dppm ligand ($\delta_{\mathrm{p}}=-21.95 \mathrm{ppm}$). The value of $\delta\left(\mathrm{P}_{\mathrm{G}}\right)\left(\mathrm{P}_{\mathrm{G}}\right.$ trans to a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group) is more negative than that of $\delta\left(\mathrm{P}_{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{F}}\right.$ trans to a PR_{3} group).

Finally, the ${ }^{19} \mathrm{~F}$ NMR spectra of the pentafluorophenyl derivatives show three sets of signals corresponding to $F_{o}(\delta-112$ to $-120 \mathrm{ppm}), \mathrm{F}_{p} \delta-157$ to -163 $\mathrm{ppm})$ and $\mathrm{F}_{m}(\delta-160$ to $-165 \mathrm{ppm})$, in keeping with the presence of a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group freely rotating around the $\mathrm{M}-\mathrm{C}$ bond.

Experimental

C and H analyses were carried out with a Perkin Elmer 240-B microanalyser. IR spectra were recorded (in the $4000-200 \mathrm{~cm}^{-1}$ range) on a Perkin Elmer spectrophotometer using Nujol mulls between polyethylene sheets. ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectra were recorded on a Varian XL-200 spectrometer. The complexes $\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Et}, \mathrm{PPh}_{2} \mathrm{Me}\right)$, and $\left[\mathrm{M}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)(\mathrm{L})\right]_{2}$ ($\mathbf{M}=\mathbf{P d}, \mathrm{Pt} ; \mathbf{X}=\mathbf{F}, \mathrm{Cl} ; \mathrm{L}=\mathbf{P P h}_{3}, \mathrm{PPh}_{2} \mathrm{Et}, \mathrm{PPh}_{2} \mathbf{M e}$, tht), (tht $=$ tetrahydrothiophene) were prepared as described previously [19]. The complexes [$\mathrm{M}\left(\mathrm{C}_{6} \mathrm{X}_{5}\right)($ acac $)-$ (L)] (M = Pd, Pt; $\mathrm{X}=\mathrm{F}, \mathrm{Cl} ; \mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Et}, \mathrm{PPh}_{2} \mathbf{M e}$, tht) were prepared by the method used for $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}^{(}\right)\left(\mathrm{PPh}_{3}\right)$ [21].

Other starting materials were prepared as follows:
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})(\mathrm{tht})\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{XIII})$
To a solution of $\left[\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\text { tht })\right]_{2}(0.387 \mathrm{~g}, 0.487 \mathrm{mmol})$ in 20 ml of acetone was added $\mathrm{AgClO}_{4}(0.202 \mathrm{~g}, 0.974 \mathrm{mmol})$. The mixture, protected from the light, was stirred at room temperature for 15 min and the precipitated AgCl was removed. $\mathrm{dppm}(0.374 \mathrm{~g}, 0.974 \mathrm{mmol})$ was added to the solution, which was then evaporated
to dryness. The oily residue was stirred with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ to give a pale-yellow solid XIII in 86% yield.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{XIV})$
This was obtained similarly from $\left[\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}$ in 75% yield.
$\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})(d p p m-\mathrm{P})(\mathrm{XV})$
To a solution of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})(\mathrm{tht})\right](0.15 \mathrm{~g}, 0.276 \mathrm{mmol})$ in 15 ml of dichloromethane was added $\mathrm{dppm}(0.106 \mathrm{~g}, 0.276 \mathrm{mmol})$. The mixture was stirred for 15 min at room temperature then evaporated to dryness, and the residue was treated with n-hexane (20 ml) to give an orange solid XV in 77% yield.
$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh} \mathrm{H}_{2}\right)\left(\mathrm{PPh}_{3}\right)$ (I)
Method a: From $\operatorname{PdCl}\left(C_{6} F_{5}\right)\left(P \mathrm{Ph}_{3}\right)_{2}$ with NaH as deprotonating agent. To a suspension of 0.2 gr of NaH in 20 ml of THF were added dppm ($0.192 \mathrm{~g}, 0.5 \mathrm{mmol}$) and $\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}(0.416 \mathrm{~g}, 0.5 \mathrm{mmol})$. The mixture was stirred for 16 h at room temperature under N_{2}, then filtered, and the filtrate was evaporated to dryness and the oily residue stirred with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ to give an orange solid I in 70% yield.

Method b: From $\operatorname{PdCl}\left(C_{6} F_{5}\right)\left(P P_{3}\right)_{2}$ using ${ }^{n} B u L i$ as deprotonating agent. To a solution of dppm ($0.57 \mathrm{~g}, 1.50 \mathrm{mmoi}$) in 10 ml of benzene was added ${ }^{\mathrm{n}} \mathrm{BuLi}(2 \mathrm{ml}$ of 0.9 N solution in n-hexane, 1.8 mmol). The mixture was refluxed for 2 h under N_{2} and $\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}(0.833 \mathrm{~g}, 1.00 \mathrm{~mol})$ was then added. The mixture was stirred for 2 h at room temperature then filtered, and the filtrate was evaporated almost to dryness. Addition of $\approx 25 \mathrm{ml}$ of $\mathrm{Et}_{2} \mathrm{O}$ gave a pale-yellow solid and an orange-yellow solution, which was filtered and evaporated to dryness. Addition of 70 ml of n-hexane to the residue afforded I in 66% yield.

Method c: From $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)$. To a solution of $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)$ $(0.120 \mathrm{~g}, 0.189 \mathrm{mmol})$ in 20 ml of dichloromethane was added dppm ($0.072 \mathrm{~g}, 0.189$ mmol). The initially pale-yellow solution turned orange. It was stirred for 30 min at room temperature then evaporated to ca .3 ml , and n -hexane (10 ml) was added, to precipitate complex I in 73% yield.

Method d: From $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(d p p m)\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)$. To a suspension of $\mathrm{NaH}(0.2$ $\mathrm{g})$ in 25 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{ClO}_{4}\right)(0.259 \mathrm{~g}, 0.254$ mmol). The mixture was stirred under N_{2} for 4 h at room temperature then filtered, and the filtrate evaporated almost to dryness. Addition of n-hexane (20 ml) afforded I in 74\% yield.
$\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh} \mathrm{F}_{2}\right)\left(\mathrm{PR}_{3}\right) ; \mathrm{PR}_{3}=\mathrm{PPh}_{2} \mathrm{Et}(\mathrm{II}), \mathrm{PPh}_{2} \mathrm{Me}$ (III)
Similar procedures gave complexes II and III which were obtained by both methods a and c.
$\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PR}_{3}\right)\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}(\mathrm{IV}), \mathrm{PPh}_{2} \mathrm{Et}(\mathrm{V})\right)$
Complex IV was obtained by methods a, c, and d from $\operatorname{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}$, $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right.$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{dppm})\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$, respectively. Complex V was obtained by method a, and also as follows:

To a solution of $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac})($ tht $)(0.142 \mathrm{~g}, 0.259 \mathrm{mmol})$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dppm ($0.100 \mathrm{~g}, 0.259 \mathrm{mmol}$), to give a yellow solution, to which $\mathrm{PPh}_{2} \mathrm{Et}$ ($55 \mu 1,0.259 \mathrm{mmol}$) was added. The mixture was stirred for 30 min at room
temperature then evaporated to dryness and the oily residue was stirred with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{ml})$ to give V in 78% yield.
$P d\left(C_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{Me}\right)(\mathrm{VI})$
Method a: From $\operatorname{Pd}\left(C_{6} C l_{5}\right)(a c a c)\left(P P h_{2} M e\right)$. This was made by method 1 c from $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})\left(\mathrm{PPh}_{2} \mathrm{Me}\right)$ in 69% yield.

Method b: From $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})(d p p m-\mathrm{P})$. To a solution of $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})$ (dppm-P) ($0.25 \mathrm{~g}, 0.297 \mathrm{mmol}$) in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{PPh}_{2} \mathrm{Me}(59.7 \mu \mathrm{l}$, 0.297 mmol). The solution was stirred at room temperature for 2 h then evaporated to dryness. The residue was stirred with n -hexane (20 ml) to give the orange solid VI, in 71\% yield.
$\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{VII})$
Method a; To a solution of $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})(\mathrm{tht})(0.223 \mathrm{~g}, 0.410 \mathrm{mmol})$ in 15 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dppm ($0.315 \mathrm{~g}, 0.821 \mathrm{mmol}$). The solution was stirred for 1 h at room temperature then evaporated to ca .3 ml , and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{ml})$ was added to precipitate complex VII in 73% yield.

Method b: To a solution of $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})(\mathrm{dppm}-P)(0.130 \mathrm{~g}, 0.155 \mathrm{mmol})$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added dppm ($0.056 \mathrm{~g}, 0.155 \mathrm{mmol}$). The solution was stirred for 1 h at room temperature then evaporated to ca .3 ml , and $\mathrm{Et}_{2} \mathrm{O}$ was added to precipitate the complex VII, in 76% yield, as a yellow solid.

Method c: To a solution of $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{Cl}_{5}\right)(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)(0.100 \mathrm{~g}, 0.139 \mathrm{mmol})$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, dppm ($0.107 \mathrm{~g}, 0.278 \mathrm{mmol}$). The solution was stirred at room temperature for 30 min then evaporated almost to dryness, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ was added to precipitate complex VII in 40% yield.

$\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh} h_{2}\right)\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)(\mathrm{VIII})$

Complex (VIII) was made by method a. (Scheme 2) from $\mathrm{Pt}_{\mathrm{t}}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac})(\mathrm{tht})$. The reaction time was 6 h and the yield 78%.

$$
\begin{aligned}
& {\left[M\left(C_{6} F_{5}\right)\left(P h_{2} P C H_{2} P P h_{2}\right)\left(P R_{3}\right)\right]\left(B F_{4}\right) \quad\left(M=P d: P R_{3}=P P h_{3} \quad(I X), \quad P P h_{2} E t \quad(X),\right.} \\
& P P h_{2} M e(X I) ; M=P t: P R_{3}=P P h_{3}(X I I)
\end{aligned}
$$

To a suspension of $\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{Ph}_{2} \mathrm{PCHPPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)(0.184 \mathrm{~g}, 0.200 \mathrm{mmol})$ in 20 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added $\mathrm{HBF}_{4}\left(0.2 \mathrm{mmol}, 27 \mu \mathrm{l}\right.$ of a solution $\mathrm{HBF}_{4} / \mathrm{Et}_{2} \mathrm{O} 54 \%$). The initially yellow-orange suspension turned white. After 30 min stirring at room temperature the precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$, dried and identified as IX (80% yield).

Complexes X, XI and XII were obtained similarly. Yields: 81\% (X), 64\% (XI), and 85\% (XII).

Acknowledgements

Financial support from CICYT (Spain) is gratefully acknowledged. E.P.U. thanks D.G.A. for a grant.

References

[^0]2 K. Issleib and H.P. Abicht, J. Prakt. Chem., 312 (1970) 456.
3 K. Issleib, H.P. Abicht and H. Winkelman, Z. Anorg. Allg. Chem., 388 (1972) 89.
4 (a) H. Schmidbaur and J.R. Mandl, Angew. Chem. 89 (1977) 640; (b) J.M. Basset, J.M. Mandl and H. Schmidbaur, Chem. Ber., 113 (1980) 1145.
5 J. Forniés, R. Navarro and V. Sicilia, Polyhedron, 7 (1988) 2659.
6 H. Hashimoto, Y. Nakamura and S. Okeya, Inorg. Chim. Acta, 120 (1986) L25.
7 I. Browning, G.W. Bushrell and K.R. Dixon, J. Organomet. Chem., 198 (1980) C11.
8 S. Al-Jibori and B.L. Shaw, Inorg. Chim. Acta, 65 (1982) L123.
9 M.P. Brown, A. Yavari, L. Manojlovic-Muir, K.W. Muir, R.P. Moulding and K.R. Seddon, J. Organomet. Chem., 236 (1982) C33.
10 T. Sekine, Y. Hasegawa and N. Ihara, J. Inorg. Nucl. Chem., 35 (1973) 3968.
11 F.G. Bordwell, W.S. Matthews and N.R. Vanier, J. Am. Chem. Soc., 97 (1975) 442.
12 St. Ahrland, J. Chatt and N.R. Davies, Quart. Rev., 12 (1958) 265.
13 A. Camus, N. Marsich, G. Nardin and L. Randaccio, J. Organomet. Chem., 60 (1973) C39.
14 M. Luser and P. Peringer, Organometallics, 3 (1984) 1916.
15 R. Usón, A. Laguna, M. Laguna, B.R. Manzano, P.G. Jones and G.M. Sheldrick, J. Chem. Soc., Dalton Trans., (1985) 2417.
16 (a) G.M. Dawkins, M. Green, J.C. Jeffery, C. Sambale and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1983) 499; (b) V. Riera and J. Ruiz, J. Organomet. Chem., 310 (1986) C36.
17 E. Maslowsky Jr., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437 and refs. therein.
18 J. Casabó, J.M. Coronas and J. Sales, Inorg. Chim. Acta, 11 (1975) 5.
19 R. Usón, J. Forniés, R. Navarro and M.P. Garcia, Inorg. Chim. Acta, 33 (1979) 69.
20 N.N. Greenwood, J. Chem. Soc., (1959) 3811.
21 R. Usón, J. Gimeno, J. Forniés and F. Martinez, Inorg. Chim. Acta, 50 (1981) 173.

[^0]: 1 R. Uson, J. Fomies, P. Espinet, R. Navarro and C. Fortuño, J. Chem. Soc., Dalton Trans., (1987) 2077 and refs. therein.

